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Abstract

This paper aims to examine changes in the gender gap of the wage distribution in China
from 1995 to 2018. We use data from the China Household Income Survey (CHIP)
1995-2013 and the China Family Panel Studies (CFPS) 2014 and 2018. To effectively
account for changes in employment, we employ the nonparametric bounds. To also
account for the labor supply’s intensive margin, we compute workers’ working hours
and hourly wage using available information in CHIP and CFPS. Our methodology
adopts a weak quartile dominance assumption, a monotone instrumental variable, and a
stochastic dominance assumption to tighten the bounds. The results show statistically
significant evidence that over the years from 1995 to 2018, the median gender wage
gap for the young workers (age 25-45) who are non-college-educated has increased by
0.17 - 0.62 log points. To estimate potential changes in the gender wage gap suggested
in the literature, we split up our analysis into two periods from 1995 - 2007 and 2007 -
2018. The results show larger changes in the gender wage gap compared to estimates in
existing studies. In the survey period between 1995-2007, we find a significant increase
by 0.19 - 0.63 log points in the median gender wage gap among the young workers
who are college-educated. In 2007 - 2018, the bounds estimates are less conclusive and
imply a decrease in the median gender wage gap among the college-educated young
workers by 0.12 - 0.59 log points, while the 95% CI does not exclude zero change. The
estimates of the gender wage gap at the 75th wage percentile show a similar pattern as
the changes at the median wage, with the statistical implications at the 25th percentile
inconclusive.
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1 Introduction

Reducing the gender wage gap brings multiple benefits to the economy such as promot-

ing economic growth (Schober and Winter-Ebmer, 2011), potentially improving women’s

healthcare access (Fee, 1991) and mental health (Platt and Keyes, 2016), reducing domestic

violence against women (Aizer, 2010), and increasing women’s fertility autonomy (Qian and

Jin, 2018). To reduce the gender wage gap, it is necessary to estimate the gender wage

gap changes in recent decades and its trend. Researchers have documented a substantial

reduction in the gender wage gap in the United States during the 1980s and a stable gender

wage gap from 1980 to 2010 (Blau and Kahn, 2017).

The story is quite different in China. In recent years, China has experienced a transition

of gender pay gaps. The observed wage earnings gap between males and females has progres-

sively widened since 1988 (Gustafsson and Li, 2000; Gustafsson and Wan, 2020). Chi and Li

(2014) find that the average gender earnings gap has increased from 1988 to 2009; estimates

from Heckman’s selection-correction model, which accounts for selection into employment,

suggest an overall smaller gap than the raw observed gender earnings wage gap. In more

recent years, Song et al. (2019) record a temporary narrowing in the gender earnings gap

from 2007 to 2013.

While the existing literature has mostly focused on measuring the average gender earnings

gaps conditional on employment, this study aims to re-examine changes in the gender wage

differentials at the median, the 25th and the 75th wage quantiles in China from 1995-2018,

while effectively accounting for changes in employment and the intensive margin of labor

supply (i.e., hours worked). We use data from the China Household Income Survey (CHIP)

1995-2013 and the China Family Panel Studies (CFPS), 2014 and 2018.

Controlling for selection into employment is particularly important in estimating the

gender wage gap in China. Since 1988 to date, the labor market structure in China has gone

through dramatic structural changes (e.g., Li et al., 2012; Meng, 2012). Before 1995, China’s

unemployment rate was lower than other countries’ average unemployment rate. Since the
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mid-1990s, the Chinese government began privatizing small and medium-sized state-owned

enterprises (SOEs), which triggered large-scale layoffs. The unemployment rate jumped to a

level even higher than that of the high-income countries, peaking above 10% in 2002-2003,

then slowly drifted down (Feng et al., 2017). In the same period when the unemployment

rate increased, the overall urban labor participation rate dropped from over 82% to around

75%. The labor force participation rate has remained low ever since, and these changes fell

most heavily on the unskilled women (Feng et al., 2017), which can be potentially due to

the increase of the returns to education and the high wage elasticity of women (Hare, 2019).

Additionally, in late 2015, the Chinese government relaxed the one-child policy in China

and replaced it with the two-child policy, which may have profound labor market impacts on

women. For example, employers may be concerned that they need to pay for maternity leaves

multiple times for each female employee and may be more reluctant to hire women after the

two-child policy taking effect. In addition, the estimated gender wage gap may be biased

due to changes in labor participation over the years. For example, some highly-educated and

likely high-wage women might be deterred by discrimination in the labor market based on

their child-bearing demand. If high-wage women are increasingly exiting the labor market,

the observed gender wage gap may be inflated.

In the literature of gender wage gap estimation, methods employed to control for selec-

tion into employment include the Heckman selection-correction model (Blau and Beller, 1988;

Mulligan and Rubinstein, 2008; Chi and Li, 2014), semiparametric quantile-copula (Maa-

soumi and Wang, 2019), the sample restriction and identification at infinity (Mulligan and

Rubinstein, 2008; Machado, 2017), imputation of unobserved wage offers (Blau and Kahn,

2006; Blau et al., 2021), and bounding techniques (Blundell et al., 2007). Each method

has its respective strengths and drawbacks. The Heckman selection-correction model yields

precise estimates for gender wage gaps; however, the identification relies on strong assump-

tions about instrumental variables that affect employment but not wages (i.e., the exclusion

restriction assumption). The nonparametric quantile-copula approach deals with selection
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into employment by computing the reservation wages of the non-working and allows for

time-varying selection. However, it also relies on the exclusion restriction of the instrumen-

tal variables. The identification at infinity does not impose restrictions on the direction of

the selection to employment; however, it restricts the sample among a population group that

would “always work” that is not representative of the total population. The wage imputa-

tion method relies on the assumption that selection into employment is based on observed

variables. Therefore, rich panel data with individuals’ wage histories is usually needed for

the imputation method, and this requirement may not be satisfied in all settings. The

nonparametric bounds method does not require exclusion restriction assumptions, although

sometimes it may lead to imprecise and non-informative implications.

To account for differences in labor force participation, we use bounds introduced by

Manski (1994), Manski and Pepper (2000), and Blundell et al. (2007). We start with the

worst-case bounds of the wage distribution in Manski (1994) and then employ additional

assumptions substantiated by economic theory to tighten the bounds. The first assumption

we use is the quartile dominance assumption. This assumption requires that conditional on

age, education, and sex, the quartile wages (wages at the 25th, 50th, 75th percentile) of the

non-working population not be higher than the quartile wages of the working population.

We also employ a stronger version of the dominance assumption – the stochastic dominance

assumption, which requires the wage distribution of the working population stochastically

dominates the non-working population’s. These two assumptions are based on a positive

selection into labor force participation which is implied by standard models of labor sup-

ply (e.g., Gronau, 1974; Blundell et al., 2007). To assess those assumptions, we estimate

the log residual wage conditional on age, education, and survey year using CHIP 1995-2013

and CFPS 2014-2018. For males and females, respectively, the residual wage of those who

are continuously employed is higher than the residual wage of those who have non-working

spells across all percentiles, except for three incidences – the 90th percentile for males over

45, the 90th and the 95th percentiles for females under 45. Besides the above exceptions
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at very high wage percentiles, evidence from the residual wage is in line with our quartile

and stochastic dominance assumptions. The third assumption employs the income of other

household members as a monotonic instrumental variable (MIV) for the wage of individuals

which is different from the traditional instrumental variable. Specifically, we assume that

a higher value of other household members’ income leads to a distribution of wage for in-

dividuals that first-order stochastically dominates the distribution of wages of individuals

with lower values of other household members’ income. A theoretical justification of this

assumption rests on the notion of assortative mating (Becker (1973); Nie and Xing (2019))

and inter-generational income persistence (Feng et al., 2021; Gong et al., 2010).

After controlling for labor force participation and the hours worked, our bounds estimates

show strong evidence of an increase in the gender wage gap in 1995-2007. The increase in the

gender wage gap is most statistically significant among the young (under age 45), the college-

educated, and at the median and high percentiles of the wage distribution. Specifically, the

bounds estimates suggest a significant increase of the gender wage gap for the young college-

educated at the median wage by at least 0.19 log points, and at the 75th percentile by at

least 0.21 log points; the bounds at the 25th percentile for the young college graduates also

suggest an increase in the gender wage gap by at least 0.11 log points, however the 95%

confidence interval (CI) does not exclude a zero change. The estimates in 2007-2018 do not

exclude a zero change for all age and education groups; two exceptions are that the bounds

at the median wage suggest an at least 0.12 log points decrease in the gender wage gap of

the young college graduates, and at the 75th wage percentile a 0.05 log points decrease for

the same group, while the 95% confidence intervals (CIs) does not exclude a zero change.

The main contributions of this paper are in four aspects. First, to the best of our

knowledge, we are the first to use bounds as the primary method to control for selection

into employment in estimating the gender wage gap in China. Second, we harmonize two

different nationally representative datasets to estimate the gender wage gap from 1995 to

2018. Different from previous literature that used earnings as the measure for the gender
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wage gap (e.g.,Chi and Li, 2014; Song et al., 2019), we use the measure of the hourly wage. In

this way, by using hourly wages and bounds, we provide statistical evidence of changes in the

gender wage gap avoiding biases due to labor supply’s intensive (hours worked) and extensive

margins (employed v.s. unemployed), respectively. Third, in addition to the median gender

wage gap, we provide additional information on the gender wage gap dynamics in China at

the 25th and 75th percentiles of the wage distribution, which provides a fuller picture of both

the lower side and the upper sides of the wage distribution. Fourth, we improve statistical

inference on the bounds using MIVs in Blundell et al. (2007). Bounds that use MIVs involve

maximum and minimum operators, for which the standard inference breaks down (Hirano

and Porter, 2012). We adopt a method proposed by Chernozhukov et al. (2013) to bias-

corrected and obtain asymptotically valid confidence intervals for these bounds.

2 Bounds on the Wage Distribution

Let W be the log wage and X be control variables such as gender, age, education, and

the survey year. Let E indicate whether a person is employed, with E = 1 being employed

and E = 0 otherwise. The probability of being employed given characteristics X = x is

written as P (x). We write the cumulative distribution function (CDF) of W given X = x

by F (w|x), given X = x and E = 1 by F (w|x,E = 1), and given X = x and E = 0 by

F (w|x,E = 0). We have

F (w|x) = F (w|x,E = 1)P (x) + F (w|x,E = 0)[1− P (x)] (1)

In equation (1), data only identifies F (w|x,E = 1) and P (x). F (w|x,E = 0), which is

the wage distribution of the population who did not take up employment, is not observed

in data. To partially identify the wage distribution of the unemployed, F (w|x,E = 0), we

construct informative bounds for F (w|x,E = 0) using comparably weak assumptions.
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2.1 The Worst Case Bounds

The worst case bounds following Manski (1994) and Blundell et al. (2007) substitute the

inequality

0 ≤ F (w|x,E = 0) ≤ 1

into equation (1) to bound the wage cumulative distribution function of the total population

as:

F (w|x,E = 1)P (x) ≤ F (w|x) ≤ F (w|x,E = 1)P (x) + [1− P (x)] (2)

The bounds can then be translated to give the worst case bounds on the conditional quantiles

following Blundell et al. (2007). Denote the q-th quantile of F (w|x) by wq(x), then

wq(l)(x) ≤ wq(x) ≤ wq(u)(x)

where the log wage wq(l)(x) is the lower bound and the log wage wq(u)(x) is the upper bound

that respectively solve the following two equations with respect to w,

q = F (w|x,E = 1)P (x) + [1− P (x)] (3)

and

q = F (w|x,E = 1)P (x) (4)

Since F (w|x,E = 1)P (x) cannot be smaller than zero, equation (3) cannot be smaller than

[1 − P (x)]; likewise, since F (w|x,E = 1) cannot be greater than 1, equation (4) cannot be

larger than P (x). Due to the lower limit of equation (3) and the upper limit of equation (4),

using the worst case bounds, we can only identify the lower bounds to log wage quantiles

q ≥ 1− P (x) and upper bounds for quantiles q ≤ P (x) (Blundell et al., 2007). In addition,

the worst-case bounds are likely to be too wide to be informative. Therefore, we impose

restrictions on the wage distribution to obtain narrower bounds for the wage distribution of
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all quantiles.

2.2 Stochastic Dominance and Quartile Dominance

The standard labor supply model suggests that when the substitution effect of wage

dominates its income effect, individuals that command higher wages will be more likely to

work, ceteris paribus (Blundell and MaCurdy, 1999). Thus, following Blundell et al. (2007),

we impose the stochastic dominance assumption on the wage distribution of the non-workers.

That is, we assume that conditional on X = x, the wages of those observed working first-

order stochastically dominates those of the non-workers. This assumption is based on the

notion that workers are more productive than non-workers; therefore, at each percentile, the

workers’ observed wages would not be lower than non-workers potential wages. Blundell

et al. (2007) show that this positive selection into employment requires that the difference

between the observed wage and reservation wage, denoted by w − wR should be positively

correlated with w. One justification of the positive correction between w − wR and w is

that we can expect individuals with a higher preference to work to have a low reservation

wage wR and have invested more in human capital in the past, and the accumulated human

capital yields higher wages w and greater differences from wR (Blundell et al., 2007).

In the recent decades of China’s labor market, the increase in the non-working population

is most heavily fallen on the unskilled workers (e.g., Feng et al., 2017; Gustafsson and Ding,

2011), which in turn relates employment to workers with relatively higher human capital. In

addition, Li et al. (2016) show that the college premiums from 1990-2000 in China have been

increased. Li et al. (2017) predict that with investment in physical capital and skill-biased

technological changes, the return to human capital in China will continue to increase. If

populations with more human capital are more likely to be employed and paid more, this

increase in return to human capital in China makes the stochastic dominance assumption

more convincing.

Following Blundell et al. (2007), we formulate the stochastic dominance assumption in
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our application as

F (w|x,E = 1) ≤ F (w|x,E = 0) ∀w, ∀x (5)

for each w with 0 ≤ F (w|x) ≤ 1 or, equivalently,

Pr(E = 1|W ≤ w, x) ≤ Pr(E = 1|W > w, x).

Under this assumption, the wage distribution of the unemployed F (w|x,E = 0) in the total

wage distribution in equation (1) is lower-bounded by the wage distribution of the employed

F (w|x,E = 1). We can replace F (w|x,E = 0) with F (w|x,E = 1) in the lower bound of

equation (1) and the bounds on the distribution of the wage becomes

F (w|x,E = 1) ≤ F (w|x) ≤ F (w|x,E = 1)P (x) + [1− P (x)] (6)

Similar to the case of the worst case bounds, the bounds for the conditional wage quantiles

under the stochastic dominance assumptions are w
q(l)
s (x) ≤ wq(x) ≤ w

q(u)
s (x), where w

q(l)
s (x)

and w
q(u)
s (x) respectively solve the following two equations with respect to w,

q = F (w|x,E = 1)P (x) + [1− P (x)] (7)

and

q = F (w|x,E = 1) (8)

The stochastic dominance assumption may not be satisfied in some scenarios. For exam-

ple, for individuals in households who have accumulated financial assets and human capital,

a negative correlation between w − wR and w might undermine the stochastic dominance

assumption (Blundell et al., 2007). Considering the possibilities that positive labor selection
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may not be satisfied, we employ a weaker restriction - a quartile dominance assumption,

which is similar to the median dominance assumption in Blundell et al. (2007). This as-

sumption restricts that the 25th, 50th, and the 75th wage quantiles offered for those not

working is not higher than the corresponding wage quantiles of the observed wage. This

assumption implies the following bounds for the distribution of wage of the unemployed.

0 ≤F (w|x,E = 0) ≤ 1, if w < w25(E=1)(x),

0.25 ≤F (w|x,E = 0) ≤ 1, if w25(E=1)(x) ≤ w < w50(E=1)(x),

0.5 ≤F (w|x,E = 0) ≤ 1, if w50(E=1)(x) ≤ w < w75(E=1)(x),

0.75 ≤F (w|x,E = 0) ≤ 1, if w ≥ w75(E=1)(x),

(9)

Under the assumption in equation (9), since the three wage quartiles (i.e., the 25th, 50th, and

75th wage quantiles) of the employed should not be lower than the respective counterpart

wage quartiles of the unemployed, when wage w is higher than the 25th quantile wage of

the employed w25(E=1), the wage distribution of the unemployed F (w|x,E = 0) is lower-

bounded by 0.25, and similarly when w is higher than the 50th or the 75th quartile wages
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of the employed. The bounds for the wage distribution are:

F (w|x,E = 1)P (x)

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w < w25(E=1)(x),

F (w|x,E = 1)P (x) + 0.25(1− P (x))

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w25(E=1)(x) ≤ w < w50(E=1)(x),

F (w|x,E = 1)P (x) + 0.5(1− P (x))

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w50(E=1)(x) ≤ w < w75(E=1)(x),

F (w|x,E = 1)P (x) + 0.75(1− P (x))

≤ F (w|x)

≤ F (w|x,E = 1)P (x) + (1− P (x)), if w ≥ w75(E=1)(x)

(10)

In the set of bounds of equation (10), the bounds for w25(E=1)(x) ≤ w < w50(E=1)(x)

is obtained by replacing F (w|x,E = 0) with 0.25 in the lower bound of the total wage

distribution in equation (1). Similarly, the bounds when w50(E=1)(x) ≤ w < w75(E=1)(x) and

w ≥ w75(E=1)(x) are obtained by replacing F (w|x,E = 0) with 0.5 and 0.75 respectively.

The corresponding bounds for the conditional wage quantiles under the quartile dominance

assumptions are w
q(l)
m (x) ≤ wq(x) ≤ w

q(u)
m (x), where w

q(l)
m (x) and w

q(u)
m (x) respectively solve

the following two equations (11) and (12) with respect to w,

q = F (w|x,E = 1)P (x) + [1− P (x)] (11)

and
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q = F (w|x,E = 1)P (x), if w < w25(E=1)(x),

q = F (w|x,E = 1)P (x) + 0.25(1− P (x)), if w25(E=1)(x) ≤ w < w50(E=1)(x),

q = F (w|x,E = 1)P (x) + 0.5(1− P (x)), if w50(E=1)(x) ≤ w < w75(E=1)(x),

q = F (w|x,E = 1)P (x) + 0.75(1− P (x)), if w ≥ w75(E=1)(x).

(12)

We find empirical evidence in our data that supports the stochastic and quartile domi-

nance assumptions. In Figure 1, we compare the distribution of residual wages by gender,

age, and work history of workers who have been continuously employed and of workers with

spells of unemployment using the China Family Panel Studies (CFPS), 2014 and 2018. The

residual wages are obtained in a regression controlling for the age and the quadratic of age,

whether obtained a college degree while controlling for province and survey year dummies.

If the wage percentiles of workers without unemployment spell are higher than workers with

unemployment spells, we consider it is in line with the positive selection into employment.

The darker lines indicate the residual wages across percentiles for workers who do not have

spells of unemployment in their work history. The lighter lines are for the workers with spells

of unemployment. The results show that the residual wages of males and females who do

not have unemployment spells are consistently higher than the wages of males and females

who do have unemployment spells from the 5th quantile to the 95th quantile, except for

three incidences – the 90th percentile for males over 45, the 90th and the 95th percentiles for

females under 45. The above exceptions at very high wage percentiles indicate the stochastic

dominance assumption, which implies that any wage quantiles of the unemployed should not

be higher than the employed, may fail at very high wage quantiles for young women and

older men. In Figure 1, we use boxes to indicate the 25th, 50th and the 75th wage quantiles.

The residual wage quantile estimates support the weaker quartile dominance assumption in

Figure 1 in all samples.
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2.3 Monotone Instrumental Variables

Under the exclusion restriction (ER), traditional instrumental variables can help to

tighten the bounds in equation (2) (Manski, 1994; Blundell et al., 2007). The literature

has used instrumental variables (IVs) to tackle the employment selection, such as an indica-

tor of a young child aged less than six years (Chi and Li, 2014), and the number of young

children in the household (Mulligan and Rubinstein, 2008). However, these instrumental

variables may not satisfy the ER, which requires that the IV can only affect wages through

employment. For example, in cases of using the number of young children as the IV, fertility

decisions may affect wage and earnings independently of employment status. For example,

Bratti (2015) shows that postponing fertility raises women’s wages, in which case the number

of children may affect earnings independently of employment, violating the ER.

Given that it is hard to find a valid traditional IV for employment that is independent of

F (w|x), we instead follow Manski and Pepper (2000) and adopt the following weaker mono-

tone IV (MIV) assumption - which does not depend on an exclusion restriction condition-

to tighten the bounds:

F (w|x, z′) ≤ F (w|x, z), ∀w, x, z, z′ with z < z′. (13)

Equation (13) assumes that a higher value of the instrument Z will lead to a distribution

of wages that first-order stochastically dominates the distribution of wages with lower values

of Z. This MIV Z in our application is the average income from the other household

members. The rationale of the MIV assumption is based on the human capital assortative

mating behavior in China (Han, 2010; Nie and Xing, 2019) and the inter-generational income

persistence (Feng et al., 2021; Gong et al., 2010). First, people tend to marry spouses

with similar human capital and earning potential (assortative mating). For people with

higher-income spouses, their wage distribution should first-order stochastically dominate

those whose spouses have lower income. Second, inter-generational income persistence may
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also contribute to the monotone relationship in equation (13). Specifically, if children with

higher-income parents are likely to earn more, the wage distribution of workers who live

with their high-income parents will stochastically dominate the workers who live with their

lower-income parents.

Under the MIV assumption, for a value of Z = z1, we can find the best lower bound to

be the largest lower bound over z ≥ z1 in the support of Z for the distribution of the wage:1

F (w|x, z1) ≥ F 1(w|x, z1) ≡ max
z≥z1
{F (w|x, z, E = 1)P (x, z)}. (14)

and the best upper bound is the smallest upper bound over z ≤ z1 in the support of Z:

F (w|x, z1) ≤ F u(w|x, z1) ≡ min
z≤z1
{F (w|x, z, E = 1)P (x, z) + 1− P (x, z)}. (15)

Regarding the bounds on the wage quantiles, for a value of Z = z1, we have w
q(l)
miv(x, z1) ≤

wq(x, z1) ≤ w
q(u)
miv (x, z1), where w

q(l)
miv(x, z1) and w

q(u)
miv (x, z1) respectively solve the following

two equations with respect to w,

q = F u(w|x, z1) ≡ min
z≤z1
{F (w|x, z, E = 1)P (x, z) + 1− P (x, z)}, (16)

and

q = F l(w|x, z1) ≡ max
z≥z1
{F (w|x, z, E = 1)P (x, z)}. (17)

The bounds of wq(x) can then be constructed by integrating over the distribution of Z

given X = x, which is,

EZ [w
q(l)
miv|x] ≤ wq(x) ≤ EZ [w

q(u)
miv |x]. (18)

1Please see Appendix B for computation and inference details.
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2.4 Gender Wage Gap Bounds and Changes over Time

Our goal is to estimate the gender wage gap dynamics from 1995-2018 in China. We

use the bounds of males and females’ wage quantiles to estimate the gender wage gap

over the wage distribution and its changes over time. For example, let the lower bound

and the upper bound for males’ wage quantile q with education and age characteristics x

in year t be wq(l)(male, x, t) and wq(u)(male, x, t), and the female’s equivalent bounds be

wq(l)(female, x, t) and wq(u)(female, x, t). The bounds for the gender wage gap at the quan-

tile q, Dq
t (x) = wq(male, x, t)− wq(female, x, t) are:2

wq(l)(male, x, t)−wq(u)(female, x, t) ≤ Dq
t (x) ≤ wq(u)(male, x, t)−wq(l)(female, x, t). (19)

Similarly, the lower bound of the change in the gender wage gap from year t to year s,

∆D
q(l)
st , where s > t, is given by,

{wq(l)(male, x, s)− wq(u)(female, x, s)} − {wq(u)(male, x, t)− wq(l)(female, x, t)}, (20)

and the upper bound, ∆D
q(u)
st , where s > t, is given by,

{wq(u)(male, x, s)− wq(l)(female, x, s)} − {wq(l)(male, x, t)− wq(u)(female, x, t)}. (21)

3 Estimation and Inference

Our bounds under the MIV assumption contains maximum or minimum operators (see

equations (14)-(17)). Hirano and Porter (2012) show that for bounds that contain maximum

or minimum operators, standard inference breaks down, which prevent us from using the

confidence intervals in Blundell et al. (2007). To obtain valid confidence regions for the true

2These bounds can be under different combinations of assumptions in Section 2.2 and 2.3.
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wage percentile parameters of interest, we estimate these confidence intervals using a method

proposed by Chernozhukov et al. (2013). In this section we briefly describe Chernozhukov

et al. (2013) as applied to our bounds.

Let the bounds for a parameter θ0 (e.g., the median wage) be given by [θl0, θ
u
0 ], where

θl0 = maxυ∈Vl={1,...,ml} θ
l(υ) and θu0 = minυ∈Vu={1,...,ml} θ

u(υ). Chernozhukov et al. (2013) calls

θl(υ) and θu(υ) bounding functions. We follow Flores and Flores-Lagunes (2013) and let υ

index the bounding functions and ml and mu be, respectively, the number of terms inside

the max and min operators. For example, suppose the wage distribution F (w1|x, z1) has two

lower bound candidates maxz≥z1{F (w1|x, z1, E = 1)P (x, z1), F (w1|x, z2, E = 1)P (x, z2)},

and we can write θl0 = maxυ∈Vl={1,2} θ
l(υ) = max{θl(1), θl(2)}, with θl(1) = F (w1|x, z1, E =

1)P (x, z1) and θl(2) = F (w1|x, z2, E = 1)P (x, z2). The sample analog estimators of the wage

distribution bounding functions θl(υ) and θu(υ) are consistent and asymptotically normally

distributed, because they are simple functions of proportions.

Chernozhukov et al. (2013) employ precision-corrected estimates of the bounding func-

tions to construct the confidence regions for the bounds [θl0, θ
u
0 ]. Specifically, the precision

adjustment is done by adding to each estimated bounding function (i.e., each bound candi-

dates) the product of its pointwise standard error and an appropriate critical value, κ(p).

With different choices of κ(p), we may obtain the confidence regions for either the true pa-

rameter value or the identified set, and half-median unbiased estimators for the lower and the

upper bounds.3 The bounding function estimates that have higher standard errors receive

larger adjustments. For example, the precision-corrected estimator of the lower bound θl0 is

given by

θ̂l(p) = max
υ∈Vl

[θ̂l(v)− κl
n,V̂ l

n
(p)sl(υ)], (22)

where θ̂l(v) is the sample analog estimator of θl(v) and sl(v) is its standard error. Cher-

3The property half-median-unbiasedness means that the lower bound estimator is less than the true value
of the lower bound with probability at least one half asymptotically, while the reverse holds for the upper
bound (Chernozhukov et al., 2013).
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nozhukov et al. (2013) compute the critical value κl
n,V̂ l

n
(p) based on simulation methods and

a preliminary estimator V̂ l
n = argmaxυ∈Vl θl(υ), and p is determined by the confidence level

of choice. Intuitively, V̂ l
n selects those bounding functions that are close enough to binding

to affect the asymptotic distribution of the estimator of the lower bound. We obtain the

precision-corrected estimator of the upper bound θu0 in a similar way. Since the critical value

and the standard error in equation (22) are both non-negative, the bias-corrected bounds

tend to be wider than the uncorrected ones. Further details on our specific implementation

steps are provided in Appendix B.

4 Data and Variable Definitions

This study uses both household-level and individual-level data from two surveys. We use

the Chinese Household Income Project (CHIP) 1995, 2002, 2007, 2013 and the China Family

Panel Study (CFPS) 2014, 2018. Using CHIP and CFPS together enables us to analyze the

dynamics of the gender wage gap in China from the mid-1990s to the late 2010s. This section

provides an introduction to CHIP and CFPS, discusses the challenges we encounter while

using data from those two surveys together, explains how we construct our key variables,

and introduces our analytic sample.

4.1 CHIP and CFPS

CHIP was carried out as part of a collaborative research project on income and inequality

in China organized by Chinese and international researchers and institutions, including the

Chinese Academy of Social Sciences and the School of Economics and Business Administra-

tion at Beijing Normal University. CHIP is a nationally representative household-level survey

aimed at estimating income, wealth, consumption, and related economic measures in rural

and urban areas in China. CHIP uses a stratified random sampling process to collect data for

three different samples – rural, urban, and migrant groups in 22 provinces, all at household
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and individual levels. CHIP samples are cross-sectional and are subsamples taken from the

National Bureau of Statistics (NBS) samples used to obtain the official household statistics

published in the annual Statistical Yearbook of China. CFPS is a nationally representative,

bi-annual longitudinal survey of the Chinese communities, families, and individuals, con-

ducted by the Institution of Social Science Survey of Peking University since 2010. Both

CHIP and CFPS include individual-level demographics and detailed information on wage

income and wealth, making it possible to analyze the national trend of wage inequality.

4.2 CHIP and CFPS Data Harmonization

Although both CHIP and CFPS are nationally representative surveys, their samples are

drawn from different provinces in China.4 Therefore, we need to make sure we use the correct

sampling weights to make those two samples comparable. In the CFPS samples, we use “the

individual-level national sampling weights” provided in the data set. In CHIP, we use the

sample weights based on regional and provincial total population for CHIP samples following

Li et al. (2017) for CHIP 2007 and 2013. Since Li et al. (2017) only provide the sampling

weight information for the years 2007 and 2013 but not for the earlier years, we do not apply

weights for the CHIP 1995 and 2002.5

To construct the hourly wage variable given yearly earnings, information about each

individual’s working hours is necessary. Since CHIP 1988 does not have information about

hours worked, we have to exclude it from our analysis. Additionally, we exclude CFPS 2010,

2012, and 2016 from our analysis due to missing values in key variables. Specifically, in CFPS

2010 and 2012, we found abnormal employment rates, especially for non-college-educated

females in the raw sample. As a reference, the employment to population ratio was 67.75%

in 2010 for individuals aged 15+ according to the World Bank; however, in CFPS 2010, after

applying sampling weights, the employment ratio is only 63.25% for individuals aged 25 –

4Table A.10 in the Appendix lists the covered provinces for each survey by year.
5Not applying these sampling weights is also consistent with the previous studies that used CHIP 1995 and
2002 (for example Xing and Li, 2012; Zhu, 2016; Yang and Gao, 2018), which also makes our results more
comparable to the literature.
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55. We also noticed that, compared to the CHIP sample, the CFPS sample generally has

a lower employment rate. However, compared to CHIP 2007, CHIP 2013, and CFPS 2014,

non-college-educated females in CFPS 2012 experienced an extremely low employment rate.

The employment ratio for non-college-educated females is between 60 - 75% for CHIP 2007,

CHIP 2013, and CFPS 2014; however, the employment ratio is even below 60% in CFPS

2012, which we have not found any reference in explaining. Therefore, we exclude CFPS 2010

and CFPS 2012 from our analysis. In CFPS 2016, an improper operation failed to collect

main-job-related information for individuals who did not experience work changes between

CFPS 2014 and CFPS 2016 (see CFPS Database Clean Report), which makes its data not

usable to us as we would not measure earnings and hours worked accurately. Therefore, we

use data from CHIP 1995, 2001,2007,2013 together with CFPS 2012 and 2016 to construct

our sample. Our sample includes Chinese urban residents aged 25 to 55 with an urban hukou

who do not work in the agriculture sector. A more detailed summary of our sample is in

Section 4.4.

4.3 Key Variables Construction

There are some differences between CHIP and CFPS in the income and employment

variables. Following Kanbur et al. (2021) and Li and Wan (2015) that use both CFPS

and CHIP to analyze the evolution of household income inequality, we break down different

income sources in CHIP (for both individual’s income and household income) and reconstruct

them into the same income definition as in CFPS. Below we discuss how we construct each

key variable.

4.3.1 Hourly Wage

Earnings in our analysis measure an accounting period of one year, including regular

wages, overtime compensation, allowances, and bonuses, which is the same definition as

in Gustafsson and Wan (2020) and Zhu (2016). We use an individual’s earnings from the
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major/primary job as the earnings measure in our analysis. For cases where the survey does

not specify a major/primary job for an individual, we used the earnings from the job where

an individual spent the most time and with the highest-earning. Earnings are adjusted to

the 2018 prices level using the national urban consumer price index provided by the National

Bureau of Statistics of China.

To construct the hourly wage, information about hours worked is needed. Among all the

surveys, only CHIP 2002 has yearly earnings with working hours per day, working days per

month, and months worked to accurately construct hourly wage. In other surveys, where

the annual working hours are not directly provided, we compute annual working hours by

either worked hours per week or worked hours per month, whichever is available, assuming

workers work four weeks per month and 52 weeks per year. We then construct the hourly

wage for our primary analysis by dividing the annual primary income by the annual total

working hours, following Hering and Poncet (2010), Kamal et al. (2012), and Lovely et al.

(2019). Constructing hourly wages helps us account for the intensive margin of labor supply.

Figure 2 presents the observed log hourly wage estimates and the observed log wage gender

gap at the median (labeled by triangles). Even though the overall trend for the observed

median hourly wage gender gap seems flat, there is a slight increase in the gap before the

year 2007, and after 2007 the gap appears to reach a plateau and shows a decreasing trend.

4.3.2 Other Household Members’ Income

For bounds using the monotone instrumental variable (MIV) assumption, the MIV for

employment in our analysis is the income from other household members. Specifically, we

use the average family income minus the person’s total income as the income from other

family members for those living with a family.

CHIP does not report the total household income in the survey; therefore, we use all

individuals’ total income as the total household income. In CHIP samples, an individual’s

total income includes the yearly income, the subsidy from minimum living standard, living
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hardship subsidies from the work unit, second job, sideline income, and the monetary value

of income in kind.

In CFPS, we are able to calculate the total household income in the household sur-

vey, i.e., the sum of the household total wage income, operating income, transfer income,

property income, and other income. We also construct another measure for total house-

hold income by adding up a household’s members’ total income. In our analysis, we take

the larger amount among these two income measures as the household total income mea-

sure./footnoteTheoretically, the added-up total household income from the household survey

should be the same as the added-up total income from all household members from the in-

dividual survey. However, when we use the CFPS sample, those two added-up numbers

are not always consistent, and there are cases where we have missing values in one of the

two. Therefore, we use the larger amount among those two added-up measures like the total

household income. Similarly, we also use the larger amount between an individual’s total

income provided by the survey and the individual’s income added up from different sources

as the individual’s total income in the analysis. In CFPS, the added-up individual income

is the sum of wage income from all sources, operating income, subsidies, and bonuses. We

assign zero to the other family members’ income for individuals who live alone. The other

family members’ income is likely to correlate positively with yearly wage income due to

assortative mating and inter-generational income transmissions, as explained in Section 2.

4.4 Sample and Summary Statistics

Our sample includes Chinese urban residents aged 25 to 55 with an urban hukou and

not working in the agriculture sector. We focus on the urban households to mitigate the

differences in social benefits between households with urban and rural hukou (Xing and Li,

2012). We exclude individuals with no household registrations or foreign residents for similar

reasons. An individual is classified as employed (Ei = 1) if he/she is reported to have been

employed during the past year. Since we use the hourly wage in our analysis, we treat self-
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employed individuals as employed (Ei = 1) but exclude them from calculating the observed

wage distribution. The observed wage distribution is conditional on the employed individuals

(E = 1) after controlling the observed individual domestic characteristics x, F (w|x,E = 1).

We divide our sample into two age groups and two education groups. We define individuals

older than 45-years-old as in the old age group and individuals aged 45 or younger as in the

young age group. For those with at most a high school degree, we define them as non-college

degree holders, and for those with either a Dazhuan degree (equivalent to an associate degree

in the U.S.) or at least a college degree as college degree holders.6

Figure 3 shows the changes in employment (including self-employed) against age by

gender. Compared to 1995, the probability of employment for males under age 45 and

females under age 40 increased in 2018. However, there is a dramatic drop in employment

probability for males around 50 and females around 45. Note that the Statutory Retirement

Age is 60 for males and 55 for females in China.

Figure 4 illustrates that the change in employment has been heavily skill-and-gender-

biased. The employment gap between college-educated and non-college-educated females is

larger than their male counterparts. Moreover, the non-college females’ employment dropped

greatly in 2013. If low-skilled women are exiting employment, we anticipate the gender wage

gap would be larger after considering the employment selection in the 2010s.

5 Results

5.1 Median Wage Differential Change

This section presents the results of estimated bounds on the changes in the median

gender wage gap in China after imposing different restrictions. Figure 5 shows the results

6We do not use finer age and education groups because constructing bounds of the wage distribution requires
the number of the observations ideally no smaller than 100.
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for changes from 1995 to 2018.7 In each figure, the space between two dots represent the

bounds to the change in the differential between 1995 to 2018. The thin outer lines denote

the 95% confidence intervals for the change in the gender wage gap. The worst-case bounds

to the change in the differentials (Figure 5 Panel A) all include a zero change. The wide

worst-case bounds are partially due to the lower employment rates for females, as shown

in Figure 4, particularly for those without a college education. To narrow the worst-case

bounds, we impose the quartile and stochastic dominance restrictions and utilize the MIV

assumption. With the quartile dominance restriction alone (Figure 5 Panel B), except for

the non-college above 45-years-old sample, all samples’ bounds indicate an increase in the

gender wage differential by at least 0.03 - 0.10 log points and by at most 0.21 - 0.65 log

points, although none of the 95% confidence intervals (CIs) excludes zero. Using the stronger

stochastic dominance assumption (Figure 5 Panel C), the bounds are tighter across the board

than those with only the quartile restrictions. Under the stochastic dominance assumption,

the bounds of the young non-college indicate a potential increase of the gender wage gap

by 0.17 log points to 0.62 log points, with the 95% CI excluding zero; for the young college

graduates, the bounds indicate an increase in the gap of 0.05 - 0.20 log points, however, the

95% CI includes zero. For the older workers, the bounds for those without a college degree

include zero change, suggesting a potential 0.07 log points decrease and a 1.06 log points

increase; the bounds for older workers with a college degree suggest an increase in the gender

wage gap by 0.12 - 0.47 log points, while the 95% CI does not exclude zero. In Panel D, the

MIV bounds tend to be wide and not informative, where the lower bounds indicate 0.10 -

1.42 log points of decreases in the gender wage gap, the upper bounds indicate 0.23 - 1.38

log points of increase in the gender wage gap. 8.

7Table A.1 in the appendix reports the values for the upper and lower bounds and the 95% confidence
intervals (CIs) of the bounds in Figure 5.

8In the current set of the results, bounds under the MIV assumption tend to be wider than those under
the median assumption and sometimes the worst-case bounds. It may be attributed to the computation
procedure explained in Appendix B.1. In brief, due to a computational constraint, we needed to first
compute bounds under the MIV assumption in each sub-sample conditional on the ten quantiles of the
MIV (the 5th, the 15th, ..., and the 95th quantiles), and then obtain the average of the ten bounds to obtain
the bounds for each education and age group. We are in the process of improving the efficiency in the
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To identify any changes in the trend of the gender wage gap, we split our study period

into 1995 – 2007 and 2007 – 2018. The break in 2007 is from the consideration that Song

et al. (2019) find a temporary narrowing in the gender wage from 2007 to 2013. Figure 6

presents the changes from 1995 to 2007.9 It is striking to see that the worst-case bounds for

the young college graduates indicate a 0.07 - 0.32 log points increase in the gender wage gap,

with the 95% CI excluding zero (Figure 6 Panel A). Since worst-case bounds do not utilize

any restrictions on wage distribution, we consider this a strong indication of an increase in

the gender wage gap. The bounds for older college graduates indicate an increase of 0.10

- 0.25 log points in the gender wage gap, although the CI does not exclude zero change.

The worst-case bounds for the young and older non-college graduates do not exclude zero.

In Panel B, the bounds under the quartile restriction follow the pattern of the worst-case

bounds, with tighter bounds for the young college graduates showing an increase of the

gender wage gap by 0.13 - 0.28 log points, with the 95% CI excluding zero; an increase by

0.11 - 0.20 log points for the old college graduates, with the 95% CI not excluding zero. The

stochastic bounds in Panel C are the narrowest, showing an increase in the gender wage gap

for the young non-college graduates by 0.04 - 0.48 log points, for the young college graduates

by 0.15 - 0.27 log points, and the old college graduates by 0.12 - 0.20 log points, while only

the CI for the young college graduates excludes zero; the bounds for the old non-college

graduates do not exclude zero change, showing a potential decrease by 0.22 log points and a

potential increase by 0.41 log points. In Panel D, all MIV bounds include zero change except

for the young college graduates, where the bounds show an increase in the gender wage gap

of 0.19 - 0.63 log point and the 95% CI exclude zero change.

Figure 7 presents the bounds of the change in the median gender wage differential from

2007 to 2018. The worst-case bounds in Panel A, the bounds under the quartile dominance

restriction in Panel B, and the bounds under the stochastic dominance restriction in Panel C

computation of these bounds.
9Table A.2 and Table A.3 in the appendix report the corresponding values for the upper and lower bounds
and the 95% CIs.
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include zero for every sample. Under the MIV restriction, the bounds for the young college

indicate a decrease in the gender wage gap between 0.12 - 0.59 log points (Figure 7 Panel D),

but the 95% CI does not exclude zero; the estimated bounds for the other age and education

groups using the MIV all include zero changes of the gender wage gap from 2007 - 2018.

5.2 25th Percentile Wage Differential Change

Figure 8 to Figure 10 present the gender wage gap changes over time at the 25th wage

quantiles.10 Except for some bounds of the college-graduates in 1995-2018 and 1995-2007,

the bounds indicate inconclusive changes in the gender wage gap among all age and education

groups and two different periods.

Figure 8 shows the change from 1995 to 2018. From the figure, none of the estimated

bounds excludes zero change based on the 95% CI. The narrowest bounds are those under

the stochastic dominance assumption(Panel C). From the left to the right, the bounds for

the young non-college graduates indicate an increase in the gender wage gap by 0.04 - 1.23

log points; the bounds for the older non-college graduates rule out a decrease in the gap

greater than 0.47 log points, and an increase greater than 0.89 log points; the bounds for the

young college-graduates suggest an increase in the gap by 0.04 - 0.36 log point; the bounds

for the older college-graduates suggest an increase in the gap by 0.06 - 0.90 log points.

Splitting up the study period into 1995-2007 and 2007-2018, Figure 9 presents the esti-

mated bounds of the gender wage gap change between 1995-2007. For the young college-

graduates group, the bounds suggest similar implications as with the gender wage gap at the

median wage. From the worst-case bounds to bounds under different restrictions, all bounds

suggest an increase in the gender wage gap by 0.03 - 0.60 log points. The bounds for the old

college graduates under the stochastic dominance indicate an increase in the gap by 0.01 -

0.20 log points. The bounds for the other education and age groups include zero.

Figure 10 presents the bounds for the change in the gender wage gap in 2007-2018. All

10Appendix Tables A4 - A6 present the corresponding values in these figures.
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bounds estimations are inconclusive for the sign on the change. The tightest bounds are

under the stochastic dominance restriction, where the lower bounds indicate a decrease in

the gender wage gap by 0.08 - 0.67 log points, and the upper bounds indicate an increase in

the gender wage gap by 0.24 - 1.19 log points.

5.3 75th Percentile Wage Differential Change

Figure 11 to Figure 13 present the gender wage gap change at the 75th wage percentile.11

Figure 11 shows the change from 1995 to 2018. The bounds under the quartile restriction

(Panel B) and the bounds under the stochastic dominance (Panel C) show an increase in

the gender wage gap for the young college graduates by 0.04 - 0.18 log points and 0.07 - 0.17

log points respectively, while none of the 95% CIs excludes a zero change. After we split up

the total study period, in Figure 12 for 1995 - 2007, the bounds estimates show a consistent

increase in the gender wage gap for those who have attended college. The worst-case bounds

of the young-college suggest a 0.03 to 0.38 log points increase, and for the old-college a 0.12 to

0.35 log points increase, while their 95% CIs do not exclude zero (Figure 12 Panel A). After

the quartile dominance restriction is imposed, the bounds estimates become more precise,

which suggest an increase in the gender wage gap for the young college graduates by 0.17 -

0.30 log points and for the older college graduates by 0.16 - 0.24 log points (Figure 12 Panel

B), and in both cases the 95% CI exclude zero (Figure 12 Panel B). Under the stochastic

dominance restriction, the bounds suggest an increase of the gender wage gap by 0.20 - 0.28

log points for the young college graduates and an increase of the gap by 0.17 - 0.22 log points

for the old college graduates, with the 95% CI excluding zero (Figure 12 Panel C). The MIV

bounds in Figure 12 Panel D also suggest an increase in the gender wage gap for the young

college graduates by 0.21 - 0.62 log points, with the 95% CI excluding zero.

In Figure 13 for 2007 - 2018, the bounds under the quartile and the stochastic dominance

restrictions for the young college graduates suggest a decrease in the gender wage gap by

11Appendix Tables A7 - A9 present the values in these figures
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0.02 to 0.22 log points (Figure 13 Panel B and C). However, the 95% CI does not exclude a

zero change for these bounds. Bounds estimates for the other education and age groups all

include a zero change.

6 Discussion

Our estimated bounds show a pattern of increase in the gender wage gap among the

young workers (age 25-45) in survey years of 1995-2007 at the median wage and the 75th

wage quantile. This result is in line with previous findings by Gustafsson and Wan (2020),

which show an increase in the gender earnings gap from 1988 - 2007 by 0.14 log points,

and findings by Song et al. (2019), whom estimates a 0.15 log points increase in the gender

earnings gap from 1995 – 2007. By separating the estimates by different age and education

groups, our results suggest that the gender wage gap increase may be larger among the

young college-educated workers than the total workers average. Specifically, under the MIV

assumption, our lower bound estimates show an increase by 0.19 - 0.63 log points at the

median wage and by 0.21 - 0.62 log points and at the 75th quantile wage, which are both

greater than the estimated gender wage gap increase in Gustafsson and Wan (2020) and

Song et al. (2019) based on the population of age 16 - 70 and 16 - 60, respectively.

Our bounds for young college graduates during 2007 - 2018 suggest a decrease of the

gender wage gap at the median wage by 0.12 - 0.59 log points, while the 95% CI does not

exclude zero. This result suggests that the narrowing of the gender wage gap might be

potentially larger in 2007-2018 than what Song et al. (2019) has previously documented,

where they find the gender wage earnings gap has narrowed between 2007 - 2013 by 0.04

log points. Suppose more young high-skilled women choose to be self-employed or work for

less hours in recent years, without controlling for selection to employment and labor supply,

estimates may overstate the gender wage gap and understate the decrease in the gender wage

gap in more recent years. This could potentially explain a larger decrease in the gender wage
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gap after 2007 suggested by our bounds estimates compared to Song et al. (2019).

The results show different trends in the change of the gender wage gap in two time

periods. Economic factors that contribute to the gender wage gap may explain the different

trends. In the time period of 1995 - 2007, we find results consistent with an increase in the

gender wage gap among the young workers both at the median wage and at the 75th wage

quantile. The widened gender wage gap can be explained by privatization and marketization

in the 1990s’ China (Liu et al., 2000; Maurer-Fazio and Hughes, 2002). Shu et al. (2007)

also show that globalization perpetuates the gender wage differential by absorbing women

in exporting-orientated manufacturing jobs that offer lower wages.

Different from 1995 - 2007, in the later period 2007 - 2018, we do not find evidence of

any increase in the gender wage gap, and some weak evidence of a decrease in the gender

wage gap among the young workers who are college-educated both at the median wage and

at the 75th wage quantile. One potential explanation for this slow-down of the gender wage

gap growth can be higher returns to the schooling of women than men and an increase in

the return to schooling in China (Ma and Iwasaki, 2021). Using panel data of the China

population from 2011 - 2015, McGarry and Sun (2018) show that the gender schooling gap

in China has been diminishing from birth cohorts born in the 1950s to those born in the

late 1980s. If women are gaining more years of schooling over birth cohorts while the return

to schooling is increasing and higher for women than for men, the schooling factor may

significantly contribute to the closing of the gender wage gap among college-educated young

workers. However, other offsetting factors such as gender discrimination may also exist to

slow down the closing of the gender wage gap. Song et al. (2014) look at the urban low-

income workers in China in 2007 and show that the gender wage gap unexplained by marital

status, age, and education accounts for 60% of the total gender wage gap. Ma (2018) uses

the China Household Income Panel (CHIP) 2002-2013 and shows that intra-sector gender

wage differential contributed more to the observed wage differential and up to 80% of the

gender wage differential is unexplained by education, occupation, and working experience.
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Hare (2019) finds that the increase in men’s labor market return to work experience has

offset the closing of the gender wage gap from the increase in females’ gain in observed labor

market characters, and Zhao et al. (2019) show similar findings.

7 Conclusion

This paper estimates China’s distributional gender wage gap dynamics from 1995 to 2018.

To control for selection into employment, we employ the nonparametric bounds in Manski

(1994), Manski and Pepper (2000), and Blundell et al. (2007). To tighten the bounds, we use

a weak quartile dominance assumption, a stochastic dominance assumption, and a monotone

instrumental variable (MIV). We have found statistically significant evidence that over the

years from 1995-2018, the median gender wage gap for the young workers (age 25-45) who

are non-college-educated has increased by 0.17 - 0.62 log points. By splitting the study

period, in the survey period between 1995-2007, we show a significant increase in the median

gender wage differentials from 1995 to 2007 among young workers who are college-educated

(an increase by at least 0.19 log points).

Additionally, this paper also estimates the gender wage gap change at the 25th and the

75th percentiles of the wage distribution. At the 25th percentile, all bounds estimates do

not statistically significantly exclude zero change in the gender wage gaps between 1995 -

2007 or 2007 - 2018. At the higher 75th percentile of the wage distribution, in the earlier

years of 1995-2007, we find significant increases in the gender wage gap in 1995-2007 for both

the young and older college-educated workers. However, we do not find evidence that the

increase in the gender wage gap has persisted into the 2010s.

Although we do not find that the gender wage gap in China has continued to increase

after 2007, we also do not find strong evidence that the gender wage gap is closing in more

recent years in any education and age group. In addition, studies such as Song et al. (2014)

and Ma (2018) show majority portion of the gender wage gap is not explained by social
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and labor market characteristics. To sustain economic growth and reduce gender inequality,

the Chinese labor market needs more protective legislation for women, such as reinforcing

equal pay for work guidelines, non-discriminatory policies in hiring, and pay data collection.

Future research can look into the mediating factors of the slowdown of the gender wage

gap in recent years and evaluate the impacts of recent policy changes, such as the two-child

policy, on the gender wage gap and women’s labor market outcomes.
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Figure 1: Distribution of Residual Wage by Gender, Age and Work History

Figure 2: Unconditional Gender Wage Gap at the Median Log Hourly Wage
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Figure 3: Age Profile for Employment for 1995 and 2018

Figure 4: Employment by College Attendance for Males and Females in 1995 and 2018
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Figure 5: Changes in Median Gender Wage Gap with Various restrictions (1995 - 2018)
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Figure 6: Changes in Median Gender Wage Gap with Various restrictions (1995 - 2007)
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Figure 7: Changes in Median Gender Wage Gap with Various restrictions (2007 - 2018)
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Figure 8: Changes in Gender Wage Gap with Various restrictions at 25th percentile (1995 -
2018)
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Figure 9: Changes in Gender Wage Gap with Various restrictions at 25th percentile (1995 -
2007)
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Figure 10: Changes in Gender Wage Gap with Various restrictions at 25th percentile (2007
- 2018)
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Figure 11: Changes in Gender Wage Gap with Various restrictions at 75th percentile (1995
- 2018)
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Figure 12: Changes in Gender Wage Gap with Various restrictions at 75th percentile (1995
- 2007)
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Figure 13: Changes in Gender Wage Gap with Various restrictions at 75th percentile (2007
- 2018)
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Appendix A

Table A.1 : Bounds on Changes in Gender Wage Differential (1995 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.1839, 0.7582) (0.0966, 0.6525) (0.1661, 0.6218) (-0.4363, 1.2050)

[-0.4410, 0.9636] [-0.0665, 0.8449] [0.0072, 0.8138] [-0.6382, 1.4219]
Old Non-College (-1.0392, 1.2585) (-0.1525, 1.1007) (-0.0652, 1.0626) (-1.4235, 1.3831)

[-1.4006 ,1.5633] [-0.3081, 1.4067] [-0.2080, 1.3711] [-1.6875, 1.6209]
Young-College (-0.0583, 0.2532) (0.0291,0.2138) (0.0535, 0.2029) (-0.0988, 0.2270)

[-0.1934, 0.3697] [-0.0943,0.3263] [-0.0683, 0.3154] [-0.3595, 0.4579]
Old-College (-0.0731,0.5305) (0.0655, 0.4845) (0.1200, 0.4692) (-0.2389, 0.9548)

[-0.3145, 0.8582] [-0.1322, 0.7956] [-0.0791, 0.7792] [-0.6021, 1.2656]

Table A.2 : Bounds on Changes in Gender Wage Differential (1995 - 2007)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.2684, 0.6283) (-0.0159, 0.5145) (0.0374, 0.4822) (-0.1410, 0.6568)

[-0.3720, 0.7277] [-0.0887, 0.6150] [-0.0345, 0.5840] [-0.3695, 0.8190]
Old Non-College (-0.7159, 0.5440) (-0.2982,0.4364) (-0.2237, 0.4062) (-0.8779, 0.4525)

[-0.9265 ,0.7223] [-0.4255,0.6110] [-0.3529, 0.5805] [-1.0366, 0.6917]
Young-College ( 0.0727, 0.3150) (0.1309,0.2821) (0.1525, 0.2740) (0.1914, 0.6283)

[0.0004, 0.3891] [0.0617,0.3536] [0.0837, 0.3445] [0.0188, 0.7363]
Old-College (0.0961, 0.2484) (0.1104,0.2037) (0.1164, 0.1919) (-0.2255, 0.6236)

[-0.0680, 0.4299] [-0.0478,0.3783] [-0.0440, 0.3681] [-0.4937, 0.8873]

Table A.3 : Bounds on Changes in Gender Wage Differential (2007 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.5779, 0.7923) (-0.2787, 0.5293) (-0.2050, 0.4734) (-0.7906, 0.9989)

[-0.8652, 1.0367] [-0.4741, 0.7383] [-0.3974, 0.6780] [-1.0104, 1.2641]
Old Non-College (-1.4397, 1.8309) (-0.4932,1.3032) (-0.3910, 1.2060) (-1.5870, 1.9620)

[-1.8237, 2.1884] [-0.7108,1.6285] [-0.5981, 1.5356] [-1.8733, 2.2426]
Young-College (-0.3249, 0.1322) (-0.2244, 0.0543) (-0.1978, 0.0277) (-0.5864, -0.1206)

[-0.4630, 0.2567] [-0.3513, 0.1727] [-0.3234, 0.1459] [-0.7991, 0.1534]
Old-College (-0.2722, 0.3851) (-0.1062,0.3422) (-0.0458, 0.3267) (-0.4810, 0.6281)

[-0.5574, 0.7369] [-0.3468,0.6784] [-0.2886, 0.6622] [-0.8719, 1.0035]

Table A.4 : Bounds on Changes in Gender Wage Differential at 25th percentile (1995 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.1327, 1.3107) (-0.0268, 1.2722) (0.0406, 1.2321) (-0.2383, 1.9061)

[-0.3272, 1.7072] [-0.2100, 1.6693] [-0.1400, 1.6268] [-0.4464, 2.1788]
Old Non-College (-0.8702, 1.0143) (-0.6224, 0.9549) (-0.4750, 0.8891) (-1.1090, 0.9674)

[-1.1050, 1.1352] [-0.8521, 1.0807] [-0.7052, 1.0122] [-1.3158, 1.1387]
Young-College (-0.0302, 0.3920) ( 0.0113, 0.3788) (0.0419, 0.3640) (-0.1677, 0.6040)

[-0.1838, 0.5378] [-0.1415, 0.5228] [-0.1113, 0.5078] [-0.4073, 0.8086]
Old-College (-0.0677, 0.9448) (-0.0278, 0.9266) (0.0635, 0.8977) ( -0.1508, 1.1682)

[-0.4119, 1.2891] [-0.3674, 1.2723] [-0.2770, 1.2424] [-0.4622, 1.6009]
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Table A.5 : Bounds on Changes in Gender Wage Differential at 25th percentile (1995 - 2007)

Worst Case Quartile Restriction Stochastic Dominance MIV
Young Non-College (-0.3083, 0.8612) (-0.2266, 0.8123) (-0.1577, 0.7747) (-0.2834, 0.8105)

[-0.3941, 0.9234] [-0.3115, 0.8738] [-0.2459, 0.8379] [-0.4415, 0.9504]
Old Non-College (-0.7554, 0.5009) (-0.6158, 0.4637) (-0.5202, 0.4166) (-0.7669, 0.3469)

[-0.9360, 0.5927] [-0.7808, 0.5530] [-0.6872, 0.5056] [-1.0022, 0.5211]
Young-College (0.0275, 0.3475) (0.0527, 0.3349) (0.0733, 0.3226) (0.1050, 0.5982)

[-0.0514, 0.4338] [-0.0255, 0.4202] [-0.0063, 0.4074] [-0.1058, 0.7543]
Old-College (-0.0094, 0.2532) (-0.0042, 0.2268) (0.0051, 0.2036) (-0.2364, 0.6094)

[-0.3311, 0.5586] [-0.3237, 0.5312] [-0.3165, 0.5098] [-0.5254, 0.9379]

Table A.6 : Bounds on Changes in Gender Wage Differential at 25th percentile (2007 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.6600, 1.2851) (-0.5504, 1.2101) (-0.4767, 1.1324) (-0.6384, 1.3798)

[-0.8613, 1.6839] [-0.7410, 1.6172] [-0.6660, 1.5416] [-0.8204, 1.7461]
Old Non-College (-1.1004, 1.4991) (-0.8352, 1.3199) (-0.6717, 1.1894) (-1.0152, 1.3758)

[-1.3180, 1.6742] [-1.0434, 1.4771] [-0.8818, 1.3463] [-1.2153, 1.5565]
Young-College (-0.3169, 0.3037) (-0.2719, 0.2745) (-0.2367, 0.2467) (-0.6773, 0.3430)

[-0.4765, 0.4591] [-0.4309, 0.4286] [-0.3970, 0.4011] [-0.8646, 0.5683]
Old-College (-0.2373, 0.8705) (-0.1810, 0.8571) (-0.0759, 0.8284) (-0.3765, 1.0626)

[-0.6306, 1.2769] [-0.5661, 1.2619] [-0.4651, 1.2328] [-0.8031, 1.5044]

Table A.7 : Bounds on Changes in Gender Wage Differential at 75th percentile (1995 - 2018)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.9838, 0.7089) (-0.0345, 0.4471) (-0.0195, 0.4006) (-1.0494, 1.0169)

[-1.1875, 0.9431] [-0.3839, 0.6326] [-0.2612, 0.5864] [-1.3701, 1.2590]
Old Non-College (-0.8550, 1.1503) (-0.4380, 0.6905) (-0.0062, 0.6338) (-1.2634, 1.0571)

[-0.9853, 1.4019] [-0.7229, 0.8818] [-0.4213, 0.8222] [-1.4339, 1.3512]
Young-College (-0.1580, 0.2887) (0.0418, 0.1824) (0.0717, 0.1671) (-0.2114, 0.2965)

[-0.3350, 0.4461] [-0.1021, 0.3206] [-0.0722, 0.3064] [-0.4995, 0.6178]
Old-College (-0.3852, 0.4004) (-0.1610, 0.2774) (-0.1562, 0.2602) (-0.1763, 0.9858)

[-0.5926, 0.6754] [-0.4157, 0.4984] [-0.4506, 0.4781] [-0.4697, 1.2311]

Table A.8 : Bounds on Changes in Gender Wage Differential at 75th percentile (1995 - 2007)

Worst Case Quartile Restrictions Stochastic Dominance MIV
Young Non-College (-0.8616, 0.7468) (-0.1496, 0.4436) (-0.1346, 0.3954) (-0.6036, 0.7791)

[-0.9371, 0.8578] [-0.2299, 0.5375] [-0.4215, 0.4897] [-0.8429, 0.9855]
Old Non-College (-0.7978, 0.5870) (-0.4069, 0.3063) (-0.3966, 0.2663) (-0.6384, 1.3798)

[-0.8887, 0.7512] [-0.5204, 0.4487] [-0.5883, 0.4087] [-0.8204, 1.7461]
Young-College (0.0261, 0.3759) (0.1672, 0.2975) (0.1983, 0.2836) (0.2143, 0.6158)

[-0.0771, 0.4717] [0.0836, 0.3812] [0.1150, 0.3668] [0.0077, 0.7828]
Old-College (0.1239, 0.3484) (0.1621, 0.2428) (0.1707, 0.2245) (-0.0020, 0.5429)

[-0.0931, 0.5886] [0.0052, 0.3986] [0.0108, 0.3828] [-0.3475, 0.8417]
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Table A.9 : Bounds on Changes in Gender Wage Differential at 75th percentile (2007 - 2018)

Worst Case Quartile Dominance Stochasrtic Dominance MIV
Young Non-College (-1.3482, 1.1881) (-0.3575, 0.4761) (-0.3343, 0.4547) (-1.3497, 0.9854)

[-1.5674, 1.4269] [-0.7370, 0.6772] [-0.5933, 0.7788] [-1.6889, 1.2598]
Old Non-College (-1.2313, 1.7375) (-0.6675, 1.0205) (-0.2173, 0.9753) (-1.4526, 1.9861)

[-1.4153, 1.9888] [-0.9620, 1.2267] [-0.6526, 1.2343] [-1.9638, 2.3489]
Young-College (-0.4504, 0.1791) (-0.2242, -0.0163) (-0.1923, -0.0508) (-0.7191, 0.0276)

[-0.6259, 0.3459] [-0.3656, 0.1215] [-0.3322, 0.0863] [-0.9513, 0.3127]
Old-College (-0.6596, 0.2026) (-0.3736, 0.0851) (-0.3603, 0.0691) (-0.5155, 0.6714)

[-0.9286, 0.5011] [-0.6505, 0.3303] [-0.6693, 0.3116] [-0.8867, 0.9756]

Table A.10: Provinces Covered by Each Survey

Survey Covered Provinces
CHIP 1995 Beijing, Shanxi, Liaoning, Jiangsu,Anhui,

Henan, Hubei, Guangdong, Sichuan, Yunan, Gansu
CHIP 2002 Beijing, Shanxi, Liaoning, Jiangsu,Anhui,

Henan, Hubei, Guangdong, Chongqing, Yunan, Gansu
CHIP 2007 Shanghai,Jiangsu, Zhejiang, Anhui,

Henan, Hubei, Guangdong, Chongqing, Sichuan
CHIP 2013 Beijing, Shanxi, Liaoning, Jiangsu,

Anhui, Henan, Hubei, Hunan, Guangdong,
Chongqing, Sichuan, Yunan, Gansu
Beijing, Tianjin, Hebei, Shanxi,
inner Mongolia, Liaoning, Jilin, Heilongjiang,

CFPS 2014 Shanghai, Jiangsu, Zhejiang, Anhui, Fujian,
CFPS 2018 Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong,

Guangxin, Hainan, Chongqing, Sichuan,
Guizhou, Yunan, Shaanxi, Gansu, Ningxia, Xinjiang

Appendix B. Estimation and Inference Implementation

In Section 3 of the paper, we have briefly described the method in Chernozhukov et al.
(2013) to compute confidence regions for bounds with maximum and minimum operators. In
Section B1, we explain the computation of bounds under the MIV assumption, and in Section
B2, we explain the detailed steps we use to compute the half-median unbiased bounds and
the confidence intervals, following the implementation in Flores and Flores-Lagunes (2013).

B.1 Inference for Bounds under the MIV assumption

The Chernozhukov et al. (2013) method requires us to apply the maximum and the
minimum operators over all the bound candidates inside the lower bound θl(υ) and the
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upper bound θu(υ) bounding functions. This requirement cause a computational challenge
for bounds under the monotone instrumental variable (MIV) assumption.

Specifically, under the MIV assumption, the bounds of the wage distribution and the wage
quantiles are first constructed conditional on each quantile of the MIV Z. In our application,
we used 10 MIV quantiles (i.e., the 5th, the 15th, ..., the 95th quantile of income from other
household members). we would need to integrate these lower bounds and the upper bounds
that are conditional on the MIV quantiles over the ten quantiles of the MIV to obtain the
lower bounds and the upper bounds in Equation 18. In this scenario, the total number of
lower and upper bounds candidates for Equation 18 may respectively surpass 3.5 million,
which cause a computational challenge for us when implementing the Chernozhukov et al.
(2013)

To see this issue in an example, when we compute the half-median unbiased upper bound
for wq(x) in Equation 18, the bounding function of θu(υ) contains the upper bound can-
didates at each of the 10 quantiles of MIV Z. (1) Conditional on the first MIV quan-
tile z = z5th, there will be 10 bound candidates, i.e., wq(x, z = z5th) that is solved from
q = F (w|x, z5th, E = 1)P (x, z5th); w

q(x, z = z15th) that is solved from q = F (w|x, z15th, E =
1)P (x, z15th); wq(x, z = z25th) that is solved from q = F (w|x, z25th, E = 1)P (x, z25th);
wq(x, z = z35th) that is solved from q = F (w|x, z35th, E = 1)P (x, z35th), ..., and wq(x, z =
z95th) that is solved from q = F (w|x, z95th, E = 1)P (x, z95th). (2) Conditional on the sec-
ond MIV quantile, z = z15th, there will be 9 bound candidates, i.e., wq(x, z = z15th) that
is solved from q = F (w|x, z15th, E = 1)P (x, z15th); w

q(x, z = z25th) that is solved from
q = F (w|x, z25th, E = 1)P (x, z25th); w

q(x, z = z35th) that is solved from q = F (w|x, z35th, E =
1)P (x, z35th), ..., and wq(x, z = z95th) that is solved from q = F (w|x, z95th, E = 1)P (x, z95th).
Similarly, conditional on 25th quantile of the MIV, z = z25th, there will be 8 bound candi-
dates, and so forth for the bounds conditional on the higher MIV quantiles.

Continuing with our example, after obtaining the upper bounds for each wq(x, z), where
z = z5th, z = z15th, ..., z = z95th, the bounding function of the upper bound in Equation 19,
EZ [wq(u)miv|x], includes bound candidates that are made of all possible combinations of the
bounds conditional on the 10 MIV quantiles, which are totally 10× 9× 8× 7× 6× 5× 4×
3 × 2 × 1 = 3, 628, 800 bound candidates. The large sizes of the matrices that contain the
bounds candidates and the variance-covariance matrices of the bounds candidates make the
computation time-consuming and not practical for our estimation purpose.

In practice, we first estimate the half-median unbiased MIV bounds and confidence in-
tervals conditional on each of the ten MIV quantiles, with the total number of the bounds
candidates not exceeding 10. We then average out the half-median unbiased MIV bounds
and confidence interval estimates over the ten MIV quantiles.
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B.2 Computation Steps of the Confidence Interval

In this section, we follow Flores and Flores-Lagunes (2013) and describe the detailed
steps followed to implement the methodology used by Chernozhukov et al. (2013) to obtain
the confidence interval for the true parameter and the half-median unbiased estimators for
our lower and upper bounds.

As discussed in the paper, the precision adjustment in Chernozhukov et al. (2013) is done
by subtracting or adding to each estimated bounding function (i.e., each bound candidates)
the product of its pointwise standard error and an appropriate critical value, κ(p). κ(p)
is selected based on a standardized Gaussian process Z∗n(v). For any compact set V ∈ V ,
Chernozhukov et al. (2013) approximate using simulation the p-th quantile of supυ∈VZ

∗
n(v),

denoted by κn,V (p), and use it in place of κ(p). Since setting V = V l for the lower bound
leads to asymptotically valid but conservative inference, Chernozhukov et al. (2013) propose
a preliminary set estimator V̂ l

n of V l
0 = argmaxυ∈Vlθl(υ) that they refer to an adaptive

inequality selector. This preliminary set estimator V̂ l
n selects those bounding functions that

are close enough to binding to affect the asymptotic distribution of the estimator of the lower
bound. For the same reason, a preliminary set estimator V̂ u

n of V u
0 = argminυ∈Vuθu(v) is

used for the upper bound. The precision-corrected estimator of the lower bound θl0 is

θ̂l(p) = max
υ∈Vl

[θ̂l(v)− κl
n,V̂ l

n
(p)sl(υ)], (23)

where θ̂l(v) is the sample analog estimator of θl(v) and sl(v) is its standard error.

Let γn = [θln(1), ..., θln(ml)]′ be the vector of bounding functions and let γ̂n be its sample
analog estimator. The steps we follow to compute the set estimator V̂ l

n and the critical value
κl
n,V̂ l

n
(p) in Equation 1 are as follows.

(1) We obtain by bootstrapping a consistent estimate Ω̂n of the asymptotic variance of√
n(γ̂n − γn). Let ĝn(υ)′ denote the υth row Ω̂

1/2
n and let sln(υ) = ‖ĝn(υ)‖/

√
n.

(2) We estimate R draws from N (0, Iml), denoted Z1, ..., ZR, where Iml is the ml × ml

identity matrix, and we calculate Z∗r (υ) = ĝn(v)′Zr/‖ĝn(v)‖ for r = 1, ..., R.

(3) Let Qp(X) denote the p-th quantile of a random variable X and, following CLR,
let cn = 1 − (.1/ log n). We compute κl

n,Vl(cn) = Qcn(maxυ∈Vl Z∗r (v), r = 1, ..., R); that

is, for each replication r we calculate the maximum of Z∗r (1), ..., Z∗r (ml) and take the c-th
quantile of those R values. We then use κl

n,Vl(cn) to compute V̂ l
n = {v ∈ V l : θ̂l(υ) ≥

maxυ̃∈Vl{[θ̂l(ṽ)− κl
n,Vl(cn)

sln(υ̃)]− 2κl
n,Vl(cn)

sln(υ̃)}}.

(4) We compute κl
n,V̂ l

n
(p) = Qp(maxυ∈V̂ l

n
Z∗r (υ), r = 1, ..., R), so the critical value is based

on V̂ l
n instead of V l.
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The precision-corrected estimator of the upper bound θu0 is given by

θ̂u(p) = min
υ∈Vl

[θ̂u(v) + κu
n,V̂ l

n
(p)su(υ)], (24)

where θ̂u(υ) is the sample analog estimator of θu(υ) and su(υ) is its standard error. To
compute κu

n,V̂ l
n
(p) in (2), we follow the same steps above but in step (3) we replace V̂ l

n by

V̂ u
n = {v ∈ Vu : θ̂u(υ) ≥ minυ̃∈Vu [θ̂u(υ̃)+κun,Vu(cn)sun(ṽ)]+2κun,Vu(cn)sun(v)}. Since the normal

distribution is symmetric, we don’t have to make any changes when computing the quantiles
in step 3 and 4.

Half-median-unbiased estimators of the upper and lower bounds are obtained by setting
p = 1/2 in the steps above and using Equations (1) and (2) to compute, respectively, θ̂l(1/2)
and θ̂u(1/2). To construct confidence intervals for the parameter θ0, it is important to
take into account the length of the identified set. Following Chernozhukov et al. (2013)
and Flores and Flores-Lagunes (2013), let Γ̂n = θ̂un(1/2) − θ̂ln(1/2), Γ̂+

n = max(0, Γ̂n), ρn =
max{θ̂un(3/4)− θ̂un(1/4), θ̂ln(1/4)− θ̂ln(3/4)}, τn = 1/(ρn log n) and p̂n = 1−Φ(τnΓ̂+

n )α, where
Φ(.) is the standard normal CDF. Note that p̂n ∈ [1 − α, 1 − α/2], with p̂n approaching
1 − α when Γ̂n grows large relative to sampling error and p̂n = 1 − α/2 when Γ̂n = 0.
An asymptotically valid confidence interval at the confidence level of 1 − α is given by
[θ̂ln(p̂n), θ̂un(p̂n)].
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